WEAR

Wear 219 (1998) 145-154

Tool wear monitoring with wavelet packet transform—fuzzy
clustering method

Li Xiaoli *, Yuan Zhejun®
* Department of Mechanical Engineering, Kunming University of Science and Technology, Kunming 650093, China
® Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China

Received 1 August 1997; accepted 6 February 1998

Abstract

In the manufacturing systems such as flexible manufacturing system (FMS), one of the most important issues is to detect tool wear under
given cutting conditions as accurately as possible. This paper develops a device for detecting acoustic emission (AE) signal form rotating
tool with magnetofluid and presents a method of tool wear monitoring, the method consists of wavelet packet transform preprocessor for
generating features from AE signal, followed by fuzzy clustering method (FCM) for associating the preprocessor outputs with the appropriate
decisions. A wavelet packet transform is used to decompose AE signal into different frequency bands in time domain, the root mean square
(RMS) values extracted from the decomposed signal of each frequency band were used as feature. Analyzing the above features, the features
that are directly relation to tool wear are used as final monitoring features. According to boring tool wear grades, the tool wear states were
divided into *‘A’,B’,*C’ and ‘D’ classifications, the state ‘D’ is proposed to be used as the prediction of tool replacement. FCM was proposed
to classify monitoring features automatically so as to recognize tool wear statutes. The experimental results indicate that the monitoring
features had a low sensitivity to changes of the cuiting conditions and FCM has a high monitoring success rate in a wide range of cutting

conditions. © 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

Flexible manufacturing systems (FMS) which employ
automated machine tools for cutting operations require reli-
able process monitoring systems to overlook the machining
operations. Among machine process variables monitored,
tool wear plays a critical role in dictating the dimensional
accuracy of the workpiece and guaranteeing automatic cut-
ting process. It is therefore essential to develop simple,
reliable and cost-effective on-line tool wear condition moni-
toring strategies in this vitally important area. Due to the
complexity of the metal cutting mechanism, a reliable com-
mercial tool wear monitoring system is yet to be developed
[17.

Various methods for tool wear monitoring have been pro-
posed in the past, even though none of these methods were
universally successful due to the complex nature of the
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machining processes. These methods have been classified
into direct (optical, radioactive and electrical resistance, etc.)
and indirect (acoustic emission (AE), spindle motor current,
cutting force, vibration, etc.) sensing methods according to
used sensors [2]. Recent attempts have been concentrated
on the development of methods which monitored the cutting
process indirectly. Among indirect methods, AE is the most
effective mean of sensing tool wear. The major advantage of
using AE to monitor the tool condition is that frequency range
of the AE signal is much higher than that of the machine
vibrations and environmental noises and not interfere with
the cutting operation. However, AE signals often have to be
treated with additional signal processing schemes to extract
the most useful information [3-5]. In the metal cutting proc-
ess, AE is attributable to many course, such as elastic and
plastic deformations, tool wear, tool breakage, friction, etc.
If AE signal can effectively be analyzed, tool wear can be
detected using AE signal. The AE signal is usually detected
by transducers, then amplified and transmitted to counter,
RMS voltmeter, spectrum analysis, etc. Among various
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approaches taken to analyze AE signals, spectral analysis has
been found to be the most informative for monitoring tool
wear {6,7]. Spectral analysis such as fast Fourier transform
(FFT) is the most commonly used signal processing tech-
niques in tool wear monitoring. A disadvantage of FFT
method is that it has a good resolution only in frequency
domain and a very bad resolution in time domain so that it
lose some signal information in time domain, it is only fitted
to deal with stochastic stable signals. Recently, wavelet trans-
form (WT) was proposed as a significant new tool in signal
analysis and processing. It has been used to analyze tool
failure monitoring signal [8-10]. WT has a good resolution
in frequency and time domain synchronously, it can extract
more information in time domain at different frequency
bands. Wavelet packets are particular linear combinations of
wavelets. They form bases which retain many of the ortho-
gonal, smooth and locate properties of their parent wavelets.
The wavelet packet transform has been used for on-line moni-
toring of machining process. It can capture important features
of the sensor signal that are sensitive to the change of process
condition (such as tool wear) but are insensitive to the vari-
ation of process working condition and various noises [11].
The wavelet packet transform can decompose a sensor signal
into different components in different time windows and fre-
quency bands, the components, hence, can be considered as
the features of the original signal.

The application of fuzzy logic pattern classification in tool
condition monitoring has been reported [ 12,13]. Fuzzy clus-
tering is the most important method in the application of the
fuzzy pattern classification. Cluster analysis is the art of find-
ing groups within data. Conventional clustering methods
assign each object with a crisp border to a single cluster.
Because of the vagueness of objects in many cases, data will
be difficult for the conventional cluster methods to deal with
them. This paper used fuzzy clustering method (FCM) to
classify tool wear condition. The FCM, used in the individual
clustering method called ‘fuzzy ISODATA’, which is one of
the unsupervised classification methods, was first presented
by Bezdek. It is also called the fuzzy c-means clustering
algorithm. The use of fuzzy clustering for monitoring tool
wear can identify the difference in wear states more realisti-
cally [14].

The objective of this paper is to introduce a method of on-
line tool wear condition monitoring using wavelet packet and
FCM. Wavelet packet transform of AE signal are used to
obtain a set of monitoring features. Fuzzy clustering identifies
the difference of tool wear states. This method eliminates the
effect of cutting conditions in the resuit while making the
classification. The experimental results show that the system
with wavelet packet and FCM is feasible. The paper is struc-
tured as follows: Section 2 is a theoretical background of
wavelet packet and FCM, Section 3 is AE signal source and
the relationship between AE and tool wear, Section 4 is signal
analysis and features extraction, Section 5 is experimental
setup Section 6 is experimental results and tool replacement
control and Section 7 contains conclusions.

2. Wavelet packet transform and fuzzy clustering
method

2.1. Wavelet transforn

An energy limited signal f(#) can be decomposed by its
Fourier transform F(w), namely

e

1 hwe
f(t)—;;_f]’(w)e dr __(=1)
where
F(w)= ff(t)e‘“‘"dz‘ (2)

f(t) and F(w) are called as a pair of Fourier transform. Eq.

(1) implies that f{7) signal can be decomposed into a family
that the harmonics ¢’ and the weighting coefficient F(w)
represent the amplitudes of the harmonics in f(z). F(w) is
independent of time, it represents the frequency composition
of arandom process which is assumed to be stationary so that
its statistics do not change with time. However, many random
processes are essentially nonstationary such as vibration, AE,
sound, and so on. If we calculate the frequency composition
of a nonstationary in the usual way, the results are the fre-
quency composition averaged over the duration of the signal
so that it does not describe adequately the characteristics of
the transient signal in the lower frequency.

In general, short-time Fourier transform (STFT) method
is used in dealing with nonstationary. STFT has a short data
window centered at time 7, (see Fig. 1). Spectral coefficients
are calculated for this short length of data, the window is then
moved to a new position and the calculation repeated. Assum-
ing that an energy limited signal f{¢) can be decomposed by
STFT, namely

G(w,7')=ff(r)g(r—'r)e"i"" dr (3)
R

where g(#— 1) is called window function. If the length of the
window is represented by time duration 7, its frequency band-
width is approximately [/7. Using a short data window
means that the bandwidth of each spectral coefficient is of
the order 1/7 and is, therefore, wide. A feature of the STFT
is that all spectral estimates have the same bandwidth.
Clearly, STFT cannot obtain a high resolution in both the
time and the frequency domains.
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Fig. 1. An illustration of the STFT.
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WT involves a fundamentally different approach. Instead
of seeking to break down a signal into its harmonics, which
are global functions that go on forever, the signal is broken
down into a series of local basis functions called wavelets.
Each wavelet is located at a different position on the time
axis and is local in the sense that it decays to zero when
sufficiently from its center. At the finest scale, wavelets may
be very long. Any particular local features of a signal can be
identified from the scale and position of the wavelets into
which it is decomposed. The structure of a nonstationary
signal can be analyzed in this way with local feature repre-
sented by close-packet wavelet of short length.

Given a time varying signal f(z}; WT consists of comput-
ing coefficient that is inner products of the signal and a family
of wavelets. In a continuous wavelet transform (CWT), the
wavelet corresponding to scale @ and time location b is

I t—b
llfa,b_ m llf( a

where a and b are the dilation and translation parameters,
respectively.
The CWT was defined as follows

wila,b)= f O dr 5)

) a,bER, a#0 (4)

where **’ denotes the complex conjugation.
With respect to wy(a,b) a signal f() can be decomposed
into

+x4 o

1 1 t—b
<r>=—ff « ,b>—¢(—)d db (6)
S o)) wila 7ol a

where ¢, is a constant depending on the base function. Similar
to the Fourier transform, w,{(a,b) and f(t) constitute a pair of
WT. Eq. (6) implies that WT can be considered to f(t) signal
decomposition. Compared to the STFT, the WT is a time—
frequency function which describes the information of f(1)
in various time windows and frequency bands. when a=2/,
b=k, j, k€ Z, the wavelet are in this case.

J .
Y =272 (27 1=k) (7)
The discrete wavelet transform (DWT) is defined
o= [fou0 (8)

where c;, is defined as wavelet coefficient, it may be consid-
ered as a time frequency map of the original signal f( ). Here,
a multi-resolution analysis approach is used in which a dis-
crete scaling function

- (1=27k
¢>,»,A.=2‘%¢(’ = ) (9

set

= jf(r)@’fk(r)dr (10)

where d, is called as scaling coefficients, it is the sampled

version of original signal, whenj = 0, itis the sampled version
of the original. Wavelet coefficients ¢;, (j=1.,...,J.) and scal-
ing coefficients d, , given by

¢j= Y x[nlh[n—27k] (11)

and

djy,\.=2x[n]gj[n—2fk] (12)
)

where x[n] are discrete-time signals, h,[n—2jk] is the
analysis discrete wavelets, the discrete equivalents to
272 (27 (1= 2k)), gln—2k] are called scaling se-
quence. At each resolution j >0, the scaling coefficients and
the wavelet coefficients

Cj+1,k=2g[n_2k]dj,k (13)

n

ds1x= Y hn=2K)d;, (14)

n

In fact, it is well known that the structure of computations in
aDWT is exactly an octave-band filter [ 13]. The terms g and
h are high-pass and low-pass filters derived from the analysis
wavelet ¢/(¢) and the scaling function ¢(#).

2.2. Wavelet packet transform

Wavelet packets are particular linear combinations of
wavelets. They form bases which retain many of the ortho-
gonality, smoothness and location properties of their parent
wavelets [14]. The coefficients in the linear combinations
are computed by a factored or recursive algorithm, with the
result that expansions in wavelet packet bases have low com-
putational complexity.

The DWT can be rewritten as follows.

ol fO]=h@) ¢ [F(D)]

dlf(H]=g()¥c;— [ f(D)] (15)

ol f(O]1=f ()

Set

H{}= Zh(k—zr) (16)
k

G{)=Y g(k—21)
k

then equation can Eeen written as follows.
olf(O1=H{c;- ([ f(D]} (7
gGLAD1=G{e- [ (D]}

Clearly, DWT only is the approximation c;—[f(#) ] but not
the detail signal d;_,[f(1)], wavelet packet transform does
not omit the detail signal, therefore, wavelet packet transform
is
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oLf(D]=H{c;i \[f(OD+G{d- [ (DT} (18)
GLFO1=Ce;,— [ FION+H{d,— [ f(D1}}

let Q/'(r) is the ith packet on jth resolution, then, the wavelet
packet transform can also be computed by the recursive algo-
rithm below:

Oo(n)=f(r)
0¥~ Y n=HQI_ (1) (19)
O (H=GQi_ (1)

wherer=12,...,2" 7 i=12,...%,j=12,..
is data length.

The wavelet packet transform can be presented as Fig. 2.

S, J=1og.N, N

2.3. Fuzzy clustering merhod

In general, there are two FCMs used in tool wear monitor-
ing. One is the technique based on the fuzzy relationship
between patterns and the other is the fuzzy c-means (fuzzy
ISODATA) algorithm. In the paper, we will focus on the
fuzzy c-means method. In the approach, the aim in clustering
is to determine the cluster centers, which are representative
values of features corresponding to the classified categories.
Once clustering centers are determined at the learning stage,
the classification is made by the comparison of the incoming
pattern and each clustering center.

Let X={X,,X,,....X,} CR, where each X; = (x;,.x5,...,%;) €
R is a feature vector; x;; is the jth feature of individual x,. For
each integer ¢, 2<c <n, let V,, be the vector space of ¢ Xn
matrices with entries in [0,1], and let uy; denote the jjth
element of any U € V,,,. The function u;:X— [0,1] becomes
amembership function and is called a fuzzy subsetin X. Here
uy=u,{x;) is called the grade of membership of x;in the fuzzy
set ;. In the space of samples, we suppose that there are
samples, which can be divided into ¢ classes. Consider the

following subset of V.,

Mfc = {UEVcn
(20)

Each U€M,, is called a fuzzy c-partition of X; M, is the
fuzzy c-partition space associated with X. For any real number

u, €[0,11V1,; ZuU=IW;ZuU>OVi

i=1 i=1

m& [1,5], define the real-valued functional JM XL.—R
by

JUV)=y Y ()=o) (21)

k=1i=1

I <m <, and usually m =2 where U= {1} is the member-
ship function, with 1, € [0,1], which denotes the degree of
membership of the kth pattern and ith cluster centers;
V={v,05,...,0.} is a vector of ¢ cluster. These v, are inter-
preted as clusters defined by their companion U matrix, and
play a fundamental role in our development. The functional
J is a weighted, least squares objective function. In order to
obtain the optimum fuzzy partition, this objective function
must be minimized, i.e.,

minimize {J(U,V)} (22)
above equation optimal solution are that
1
U= o= ik 23
e ( uxk—viu)'“ K (2
=\ X =V

Z(lﬁk) X
- Vi (24)

Vi=—————,
Z(”ik)

k=1

The following algorithms were used: (1) guess U; (2) set ¢
and m; (3) calculate cluster centers V,; (4) calculate Ui
update bU to U*; (5) if max;; {u,™* —uy}= <&, stop, oth-
erwise, reliable U* — U and return to (3). Suppose that under
a given cutting condition, a clustering center was determined
by the features of training data sets. Then all subsequent
observations can be classified by using Eq. (23). That is

1 .
= )zum_l) ik (25)

Uro

Z( 1Xo=Vil

j=1 ”X O_VJ'”
where 1, 1s the fuzzy grade of the current observation being
assigned to kth wear state category and X, is the current
observation.

The above method has been applied to monitor drilling

wear [15]. The application results show that the fuzzy c-

means method is more direct and easier to implement than
the clustering technique discussed previously. With the inte-
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gration of fuzzy sets, FCMs become very powerful for the
classification of the pattern situated between clusters. They
are particularly suitable for handling the clustering of wear
states, which can be regarded as linguistic variables. But, the
above method is effective only when the cutting conditions
are kept constant, which limit the application of the method
at the workshop level.

3. Acoustic emission signal and tool wear
3.1. Sources of acoustic emission

Research has shown that AE, which refers to stress waves
generated by the sudden release of energy in deforming mate-
rials, has been successfully used in laboratory test to detect
tool wear and fracture in single point turning operations [ 16].
Dornfeld [17] pointed out the possible sources of the AE in
metal cutting: (a) plastic deformation during the cutting
process in the workpiece; (b) plastic deformation in the chip;
(¢) friction contact between the tool flank face and the work-
piece resulting in flank wear; (d) friction contact between
the tool rank face and the chip resulting in crater wear; (e)
collisions between chip and tool; (f) chip breakage; (g) tool
edge chipping. AE sources in boring are shown as Fig. 3.

Research results have shown that friction and plastic defor-
mation have comparable importance with regard to the gen-
eration of the continuous AE. Because the amplitude of the
signals from the workpiece is reduced during wave transfer
from workpiece to tool possibly by reflection at the interface,
the friction between workpiece and tool can be regarded as
the most important source of the continuous AE [18]. In the
present investigation, we verified above results, therefore, we
can consider the friction between workpiece and tool as the
essential source of the AE.

3.2. The relationship between AE and cutting condition

The relationship between the RMS of continuous AE and
the cutting parameters and tool wear can be established by
experiment method. Results have shown that RMS is pro-
portional to v, a,, tool flank wear VB, respectively, but it is
independent on feed rate. The results are presented in Figs.
4-7.

According to above results, the RMS of AE can be calcu-
lated from the machining and tool wear parameters:

rake face

chip breakage

.
crater wear \‘\
plastic deformatiori zone

friction aras  flank-wear flank face

workpiece

Fig. 3. AE sources in boring.
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Fig. 4. The relationship of the RMS of AE and cutting speed, feed rate:

0.2 mm/rev, depth of cut: 0.5 mm.
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Fig. 5. The relationship of the RMS of AE and the depth of cut, cutting feed:
25 m/min, feed rate: 0.2 mm/rev.
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Fig. 6. The relationship of the RMS of AE and feed rate, cutting feed:
25 m/min, depth of cut: 0.75 mm.
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Fig. 7. The relationship of the RMS of AE and tool flank wear, cutting feed:
25 m/min, feed rate: 0.2 mm/rev.

RMS=Kv.a,VB (26)

where K is the area density of contact points, v, the cutting
speed, a, the depth of cut, VB the wear land. K depends on
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the structure of the surface, which remains nearly constant
with increasing wear.

3.3. AE signal pretreatment

During the experiment, the friction between workpiece and
tool generates a continuous AE signal, it gives information
on tool wear. However, the experimental results show that
sometimes burst-signals with high peak amplitudes interfere
with the continuous AE signal. In fact, these burst signals
relate to the chip breakage and give information on the chip
behavior, but not on tool wear, Therefore, it is essential to
filter out these bursts from the continuous AE signal for a
reliable tool wear monitoring before further analysis is per-
formed. The floating threshold value is defined, which is
higher than the mean signal level. The constituents are due
to chip impact and breakage exceeding this threshold are not
considered as the determination of the mean signal level are
filtered out from the continuous AE signal. The signal con-
stituents below the threshold represent the continuous AE,
which will be analyzed by follow signal processing method.

4. Signal analysis and features extraction
4.1. Signal analysis

In monitoring of tool wear, AE signals monitored contain
complicated information on the cutting processing. To ensure
the reliability of tool monitoring system, it is important to
extract the features of the signals that describe the relationship
between tool condition. From a mathematical point of view,
the features extraction can be considered as signal compres-
sion. Wavelet packet transform is represented as a com-
pressed signals methods. Therefore, it is ideal to use the
wavelet packets as the extracted features [ 19,20].

Fig. 8 shows a typical cutting process experiment in boring.
The AE signal in time domain are presented. At the beginning
of the cutting process, signal affected by tool wear is smaller
because the tool is fresh, the magnitude of the AE is small,
cutting process is stable. As the tool wear increases progress-
ing, the magnitudes of the AE increase.

Fig. 9 shows the AE signal in frequency domain for exper-
iment shown in Fig. 8. It can be seen that the magnitude of
AE in frequency domain are sensitive to the change of tool
states.

Fig. 10 shows the decomposing results of AE signal for
the experiment shown in Fig. 8 through the wavelet packet
decomposition. Fig. 10 represents the constituent parts of the
AE signal at frequency band [0, 62.5], [62.5, 125].....
[937.5, 1000] KHz, respectively. Obviously, these decom-
posing results of AE signal not only keep the same features
which are discussed above, but also provide more information
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Fig. 8. The AE signal in a typical tool wear cutting process, cutting speed:
30 m/min, feed rate: 0.2 mm/rev, depth of cut: 0.5 mm, work material:
40 Cr steel, tool material: high-speed-steel, without coolant. (a) VB =10.06
mm; (b) VB=0.26 mm; (¢) VB=0.62 mm.
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Fig. 9. The power spectral density of AE signal in a typical tool wear cutting
process.

such as the time domains constituent part of the AE signalat
the frequency band. The mean values of the constituent parts
of the AE of each frequency band can represented the energy
level of the AE in the frequency band.



L. Xiaoli, Y. Zhejun / Wear 219 (1998) 145-154 151

-

@
AR A AN A At
AR P N gttt
e A Vst e
P i Al

bt ¢ nﬂj rellllj (i} \ i e =

®)

e O R eSO I PR PR

WW“WV&!WM et o ok
W’YWWI ' e %’n_ww,g-i,w.

A e e

St m——

©

Fig. 10. The composing results of AE by wavelet packet transformation.

m I
1 L

x

4.2. Feature extraction

In fuzzy c-mean method applications, the feature selection
and feature number are very important. The selected features
must be independent and the number of features must be Jarge
enough. For the tool wear monitoring, the cutting conditions
(cutting speed, feed rate and cutting depth) are also the fea-
tures related to wear, when signal features extracted from AE
signal corresponding to different cutting conditions, these
cutting condition were also represented by the features. In
practice, the cutting condition were not dependent on fea-
tures. So we hope that the selected features should show a
low sensitivity to change of the cutting conditions, such as
tool wear monitoring system could be suitable for a wide
range of machining conditions.

According to the above discussion, the RMS in each fre-
quency band was used to describe the features of different
tool condition. The selected features were summarized as
follows.

1, = RMS of wavelet coefficient in the frequency band [0, 62.5] KHz
na = RMS of wavelet coefficient in the frequency band [62.3, 125] KHz

;z,f,= RMS of wavelet coefficient in the frequency band .[937‘5, 10007 KHz

But above all of features are insensitive to tool wear. Accord-
ing to a large mounts of data analysis, we found that 3, n,,
Hs, Mg, H7, Rg, Hy3 are sensitive to tool wear, Figs. 11 and 12
showed two typical examples, and the above features are

feature value

012 _ ——ql

0.1 ¢ —&—q2
—a

0.08 | @

——q4

0.06 s

0.04 —o—q6

0.02 a7

0 ! ) , wear (mm)
0.05 0.1 0.3 0.5

Fig. 11. The relationship between features extracted and tool wear, cutting
speed: 30 m/min, feed rate: 0.2 mm/rev, depth of cut: 0.5 mm, work mate-
rial: 40 Cr steel, tool material: high-speed-steel, without coolant.

feature value )
05 _ —~=—ql
—&—q2
04 L
—k—q3
03 L —il— qd
02 L ——q5
——qf
0.1 L
0 ) ), wear (mm

0.05 0.1 0.3 0.6

Fig. 12. The relationship between features extracted and tool wear, cutting
speed: 40 m/min, feed rate: 0.3 mm/rev, the depth of cut: 1 mm, work
material: 40 Cr steel, tool material; high-speed-steel, without coolant.

replaced by ¢y, 42, g3, 94, ds» gs» G7, TeSpectively, and those
will be used to classify tool wear states.

According to Eq. (26), it shows that RMS of continuous
AE is proportional to v, a,, tool flank wear VB, but it is
independent on feed rate. For the purpose of elimination of
the effects of cutting conditions on features, divided v, a; into
q; (i=1,2,...,7) and get new g; value, the new g, value are
final monitoring features.

5. Experimental set-up
5.1. AE signal transmission

Itis known that AE is considered as one of the most method
for tool monitoring. One of the main obstacles in its appli-
cation is how to detect the AE signals from rotating tool, such
as Machining Center for boring and milling. Recently, trans-
mitting AE signals of rotating tool to the AE sensor by liquid
medium is one of the most effective method, which do not
affect the machining process. The authors have studied the
transmitted property for several liquids [21]. The results
show that AE wave attenuation through magnetofluid with
magnetic field is the smallest. Based on the above discussions,
the authors had developed a device for detecting AE signal
from rotating tool with magnetofluid. The device has been
applied to FNC 74-A20 machining center. Its structure is
shown as Fig. 13. The experiment results show that above
structure can approve AE signal tool monitoring sensitivity.
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AE sensor

magnetofluid>magnet

1
Fig. 13. Apparatus for detecting AE though magnetofluid.

The reason is that this structure has many advantages: firstly,
itis able to obtain high signal/noise ratio for tool monitoring;
secondly, the magnetofluid can be kept at a suitable place in
machining tool spindle without disturbing the cutting process;
thirdly, it can lengthen the signal exiting time to make the
signal sampling and processing simple.

5.2. Experimental set-up

The schematic diagram of the experimental set-up is shown
inFig. 14. Cutting tests were performed on Machining Center
Makino-FNC74-A20. In the experiments, a commercial pie-
zoelectric AE transducer was mounted on spindle. AE signals
were transducer by magnetic fluid between spindle and tool.
During the experiments, the monitored AE signals were
amplified, high-passed at 50 KHz, low-passed at 1 MHz, and
then were sent via an A/D converter to a personal computer
(AST/486).

A successful tool wear detecting method must be sensitive
to tool wear change and insensitive to the variation of cutting
conditions. Hence, cutting tests were conducted at different
conditions to evaluate the performance of the proposed
method. The tool parameters and cuiting conditions were
listed in Table 1.

Machining , [r-oooiZ ity
Center | , | A/Dconverter |,
l b
1 )
: AE sensor + { wavelet packet| !
tool , | ttansform i
i magnetic fluid | } !
]
I work piece E fuzzy clustering | !
1 )
! | Decide-making | .
) i
(PC AST/486)

Fig. 14. Schematic diagram of the experimental set-up.

Table 1
Experimental conditions for the boring example

Tool bore tool material: high-speed steel
tool geometry: y=10°, a=8° A= —2°, y=90°, kx=12°,
and r=0.3 mm

Cuiting cutting speed: 20 ~40 (m/min)

Condition: feed rate: 0.1, 0.2, 0.3 (mm/rev)
depth of cutting: 0.1, 0.2, 0.5, 0.75, 1.0, 1.25 (mm)
without coolant

Workpiece 45# quenching-and-tempering steel

6. Experimental results and tool replacement
6.1. Experimental results

For above feature sets, clustering centers were calculated
by successively applying Egs. (23) and (24) with the optim-
ization procedure using weighting exponent m =2. Another
parameter to be decided is the cluster number c. The number
of clusters ¢, should be determined according to process
mechanism as well as one’s needs. That is, understanding
how many clusters are present in the unlabeled data sets
should be done beforehand. In this research, tool wear state
was classified into four classifications including: initial wear,
normal wear, acceptable wear, severe wear, i.e., A, B, C and
D. Based on tool flank wear, these wear states are summarized
in Table 2. The resulting cluster centers of training data sets
were calculated and listed in Table 3.

Before doing any classification, one must first find the
grades of membership corresponding to each individual wear
states. In the following example, Eq. (25) is used to calculate
the grades of membership of test data, based on the above
clustering centers, Table 4 shows the fuzzy membership grade
of part test data, cutting conditions: cutting speed: 30 m/min,
feed rate: 0.2 mm, depth of cutting: 0.5 mm. Fig. 15 shows
the grades of membership for four different boring states A,
B, Cand D.

A total of 50 cutting tests corresponding to variable cutting
states were collected. Thirty samples were randomly picked
as learning samples; the remaining samples were used as the
test samples in the classification phase. The classification
results are listed in Table 5. From Table 5, overall perform-
ance is over 90%, tool wear condition monitoring system
have a high success rate. Thus, the features selection is suc-
cessful. It is shows that the tool wear condition monitoring
system meets the need of application.

Table 2
Tool wear states classification

Tool condition Flank wear Classification
Initial wear 0<wear<0.2mm A
Normal wear 0.2 < wear < 0.4mm B
Acceptable wear 0.4 < wear < 0.6mm C
Severe wear 0.6 < wear D B
Table 3
Normalized cluster center centers of training features

A B C D
I 0.1506 0.1809 0.2074 0.2682
g» 0.0367 0.0406 0.0431 0.0487
g 0.0935 0.1043 0.1096 0.1139
qs 0.0599 0.0672 0.0767 0.0871
gs 0.1715 0.2115 0.2402 0.2605
ds 0.1038 0.1362 0.1612 0.1744
g7 0.0573 0.0860 0.0987 0.1154

Pl

]
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Table 4
The grades of membership of test data

Test number m (A) M2 (B) uy (C) s (D)
1 0.9701 0.0276 0.0012 0.0011
2 0.7832 0.2012 0.0123 0.0033
3 0.0256 0.8341 0.1202 0.0201
4 0.0201 0.8014 0.1567 0.0218
5 0.0192 0.5217 0.2437 0.1962
6 0.0164 0.4413 0.3674 0.1749
7 0.0152 0.3432 0.4672 0.1744
8 0.0123 0.2023 0.5631 0.2223
9 0.0113 0.1089 0.6192 0.2606

10 0.0101 0.0962 0.6452 0.2485

11 0.0092 0.0812 0.6812 0.2284

12 0.0073 0.0715 0.4725 0.4508

13 0.0052 0.0478 0.4127 0.5343

14 0.0037 0.0545 0.3671 0.5747

15 0.0010 0.0278 0.3123 0.6589

16 0.0009 0.0178 0.2561 0.7257

17 0.0005 0.0081 0.1754 0.8160

18 0.0003 0.0016 0.1103 0.8878

19 0.0002 0.0007 0.0023 0.9936

fuzzy grades —— A —m—RB
1 ¢ ——C —eD

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19
Fig. 15. Grades of membership for different boring states.

Table 5
Classification results of test samples

Tool wear performance Recognizable rate Overall
condition (%) (%)

A 82

B 89 90.25
C 92

D 98

6.2. Tool replacement control

It is known that one of the main objectives of detecting
tool wear states is to provide the criterion for replacing tools.
During practical application, we are interested only in notice-
able changes of the tool wear states. According to detected
tool wear states, we are able to decide if tool should be
replaced. The above method can detect tool wear states
according to previous data and results. For boring operation,
on-line monitoring can be conducted by calculating the fuzzy
grade of the current observation, the tool replacement deci-

sion is made when the fuzzy grade of ‘D’ of the current
observation is close to 1.

In general, the rule for replacing is suggested as follows:
if grade of membership of ‘D’ > 0.8 then replace the bore.
Such as Table 4, test number 17 as the example, the grades
of membership of test data is as follows: ‘A’=0.0005,
‘B’=0.0081, ‘C’=0.1754, ‘D’ =0.8160. The high grade of
membership of ‘D’ implies severe wear of the bore and the
tool should be replaced.

7. Conclusions

One of the most complex problems for tool wear condition
monitoring system is that of extracting the signal features and
describing the relationship between the tool wear condition
and the signal features under a given cutting condition as
accurately as possible. In this paper, a method has been devel-
oped for monitoring tool wear in boring operations using AE
information. Several features were derived from wavelet
packet transform, and the optimal features selected were sen-
sitive to tool flank wear. Fuzzy ISODATA method provides
more realistic classification for tool wear states.

The results can be summarized as follows.

(1) One of the main obstacles in AE application is how to
detect the AE signals from rotating tool. Transmitting AE
signals of rotating tool to the AE sensor by liquid medium is
one of the most effective methods. The authors have studied
the transmitted property for several liquids. The results
showed that AE wave attenuation through magnetofluid with
magnetic field is the smallest. Based on the above result, a
device for detecting AE signal from rotating tool with mag-
netofluid has been developed. The experimental result
showed that the above structure can approve AE signal tool
monitoring sensitivity.

(2) The wavelet packet transform is a powerful tool for
on-line monitoring of tool wear. It can capture improvement
features of the sensor signal, namely, features are sensitive to
the change of tool wear condition, but are insensitive to the
variation of process working conditions and various noises.
The wavelet packet transform decomposes AE signal into
components in different time windows and frequency bands.
The components which contain the principle components of
the original signal are defined as objection of feature selected.

(3) The RMS of wavelet coefficient of the components
selected can be considered as the monitoring features, the
pretreated monitoring features have low sensitivity to
changes in the process variables. The feature extracted with
wavelet packet transform can be implemented real time since
wavelet packet transform requires only a small amount of
computation.

(4) Pattern recognition using the fuzzy ISODATA algo-
rithm has been successfully incorporated into monitoring of
the wear states of bore. The detection of the membership
grade of the wear state ‘D’ was proposed as a control variable
of bore replacement.
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In short, the integrated wavelet packet transform and fuzzy
c-mean analysis can enable tool wear condition monitoring
system to have a high monitoring success rate over a wide
range of cutting condition.
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